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Abstract

A new simple method of stress inversion uses hierarchical cluster analysis for forward separation of heterogeneous fault/slip data into

subsets. Fault/slip data are classified into homogeneous fault classes, and a clustering routine classifies these into subsets. The method

includes a way of discarding some residual data at the first stage that makes it fairly easy to recognize and eliminate some spurious fault data.

However, this method is a type of hard division that overlooks the indeterminate nature of fault data. The more heterogeneous the data, the

larger the calculation needed to find from a K-data set the homogeneous fault class that agglomerates a pair of 5-data subsets, sampled in a

binomial distribution, with the maximum similarity in estimated stress vector between them. The K-data set is a working data group

successively taken from the whole data. Given P phases of different stress state, the minimum value of K is 5PC1. Results from applying the

method to two examples, artificial and real, demonstrate the feasibility of the method.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Inversion of stress from geological structures is becom-

ing a significant tool for structural geologists (Ramsay and

Lisle, 2000). It is usually based upon measured fault/slip

data. These data are referred to as heterogeneous if they

record multiphase deformation, or homogeneous if they

record a single-phase deformation. The former is quite

common by virtue of both spatial and temporal variation of

the stress field. In nature, faults might be either newly

produced in one individual phase or reactivated in a

subsequent phase. Field observations in a study area,

including fault orientations, properties, cross-cutting

relationships, and so forth, are normally required to

determine the relative age of individual faults, and to

establish faulting phases, but these are not always available

and complete. Homogeneous deformation is assumed by

stress inversion (Carey and Brunier, 1974; Angelier, 1979;
0191-8141/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
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Etchecopar et al., 1981; Angelier, 1994). Conventional

inversion methods are based on single-phase deformation,

and are applicable to homogeneous fault/slip data. They lose

validity in the case of heterogeneous fault/slip data (Will

and Powell, 1991; Nemcok and Lisle, 1995; Nemcok et al.,

1999).

Nearly all methods developed for separating a set of

heterogeneous fault/slip data into homogeneous subsets are

numerical. They can be categorized as grid-searching

schemes (e.g. Hardcastle and Hills, 1991; Yamaji, 2000),

hierarchical cluster analyses (Nemcok and Lisle, 1995;

Nemcok et al., 1999), dynamic cluster analysis (e.g. Huang,

1988; Shan et al., 2003, 2004a), and graphic presentations

(Simón-Gómez, 1986; Fry, 1992; Célérier, 1995; Célérier

and Séranne, 2001; Shan et al., 2004b). The advantages and

disadavantages of these methods in separating hetero-

geneous data have been discussed by Shan et al. (2003)

and Nemcok et al. (1999). Interested readers are encouraged

to refer to their papers.

To solve for stress requires a minimum number of

fault/slip data. It is generally 5 or 6, or another figure that

was no less than the division number of the parameter space.

That is to say, homogeneous subsets identified in any way,

although variable in number, all contain at least the

minimum number of fault/slip data. Hierarchical cluster
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analysis cannot be directly adopted for this purpose because

of its emphasis on the individual fault datum. It requires

some kind of preprocessing of the fault data. After

discretizing the parameter space, Nemcok and Lisle

(1995) introduced a variable having its components

assigned 0/1 according to the fit/misfit under a prescribed

resolution between measured fault slip and calculated fault

slip under the given discretized stress. So each fault/slip

datum is characterized by an assigned value of the new

variable, to which hierarchical cluster analysis is applied.

Their preprocess focuses on fault/slip data similarity in

the parameter space; hence, it is somewhat reverse in a

search for stress solutions. By contrast, the theme of this

communication is to develop a forward preprocess,

accomplished during the search for stress solutions. This

paper tests this preprocess using sample data and discusses

its advantages and disadvantages.
2. Methodology

2.1. Parameter space

After some transformation, stress inversion may be

turned into a linear problem that can be simply manipulated

(Fry, 1999; Shan et al., 2003). Further, under auxiliary

constraints, the parameter space is reduced to a five-

dimensional unit sphere centred at the origin. In the reduced

space, homogeneous fault data tend to lie in a hyperplane

through the origin, normal to which is the vector represent-

ing the optimal stress. Accordingly, heterogeneous fault

data tend to lie in many such hyperplanes (Fry, 1999). There

is an analytical solution of the optimal stress vector from a

given fault data set (Shan et al., 2003).

2.2. Homogeneous fault class

For a heterogeneous fault/slip data set, we assume that

each homogeneous subset has a number of data that are

larger than the dimension of the parameter space (5). This is

explicitly or implicitly necessary for all inversion methods.

We take a set of K fault/slip data from the whole L data (5!
K%L). K must be large enough to ensure that there is

usually a homogeneous subset having more than 5 data

within the selected set. We call this subset a homogeneous

fault class. We propose to arrive at it as follows:
1.
 Select all 5-datum subsets from the K-data set in a

binomial distribution,
2.
 Calculate the similarity coefficient between the stresses

estimated from any two different 5-datum subsets using

the analytical scheme (Shan et al., 2003), and
3.
 Fuse the two 5-datum subsets having the largest

similarity coefficient to produce a homogeneous fault

class. If there is more than one pair of such a kind, only

the first pair is taken into account. The arbitrary selection
of any one among such pairs has no effect on the final

result.

In this way, the homogeneous fault class has a data

numberO5 and%10. There are other possible ways to look

for a homogeneous fault class, but they are beyond the scope

of this paper.

When K equals L, the selected fault set becomes the

whole data, from which exhaustive selection would give too

many 5-datum subsets. This enormous calculation is not

necessarily worthwhile as a way to look for a single

homogeneous fault class, because our strategy is to find and

cluster all the classes of the same kind. Therefore, it is

practical to have a value of K as small as possible. The value

of K, as well as its influence on defining such a class, will be

discussed below.

Once a homogeneous fault class is obtained, its data are

excluded from the whole L-data set, and the above-

mentioned procedure is then repeated for another class.

This process does not terminate until the residual data are

less than K in number.

2.3. Residual data

At the final stage, the method given above is inapplicable

to the residual data, due to their small number (!5), or to

the existence of some spurious result, as will be discussed

below. Either way, the residual data need to be processed

differently. Each datum must have one of three fates:

assigned to an old fault class, or to a new fault class, or

discarded. The choice depends upon its angular cosines with

the stress vectors of the obtained fault classes.

Take Wi to be the cosine of the angle between a specific

residual fault datum and the stress vector that is normal to

datum vectors in the ith homogeneous fault class calculated.

Let us introduce W as a limit (maximum cosine, minimum

angle). For example, W was assigned the value 0.1 in this

paper. IfWOWi, we assign the datum to the ith fault class; if

not, we make no decision until all data are checked. For the

latter data, we will discard them if they are !5 in number,

or open a new homogeneous fault class for them if they are

S5. That is to say, a few spurious fault data, if they exist,

would be recognized and eliminated in that way before

classification.

2.4. Systematic classification

Using the above means, we eventually obtain a set of

homogeneous fault classes from fault data. These classes are

considered as entities, upon which our classification is

based. There are a variety of hierarchical cluster schemes,

such as single linkage, complete linkage, average linkage,

median, centroid, increase in sum of squares (or Ward’s

(1963) method), and so forth (see Everitt et al., 2001).

According to the study by Mojena (1977), Ward’s (1963)

method is the optimum choice for producing a monotonic
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series of solutions. However, these conventional schemes

cannot be applied directly to the fault/slip data of the

homogeneous fault classes, as our purpose is to classify

entities on the sole basis of the most similar stress vectors.

Unlike their stress vectors, the fault/slip data of entities that

are classified together may not be spatially close to each

other in the parameter space.

To achieve our purpose, we develop a new classification

scheme that minimizes the sum of squares of cosines

between the stress vector for a certain entity, and the

individual fault datum vectors from which it is determined.

This sum was also defined by Shan et al. (2003, 2004a) as

the objective function, of which stress vectors were

unknown variables, solved for by minimizing it under

some auxiliary constraints. Let Ep and Eq be the sum for

entities p and q, respectively, at the first stage. These two

entities are classified into a new large entity with a sum of

Epq. It is proved in Appendix A that:

EpqREp ; EpqREq (1)

This indicates that the new entity inevitably becomes

more dispersed than its two daughter entities. In each stage

of classification, only those two entities with the least sum

of square cosines, or Ei in the ith stage, are agglomerated

into a new entity. Finally we have a series of Ei that increase

monotonically. Subscripts denote the number of entities

resulting at each stage: E1SE2S.SEnK2SEnK1. This is

similar to Ward’s (1963) method.
2.5. Number of subsets

For a given heterogeneous fault/slip data set, we wish to

know through stress inversion how many phases are mixed in

the set. The number of homogeneous subsets is generally

unknown, and needs to be solved for. Can it be determined

from hierarchical cluster analysis? This is a difficult problem

since there are no satisfactory methods for determining it

(Mojena, 1977; Everitt, 1979; Hartigan, 1985).

Given a monotonic increase in values of Ei (iZ1,

2,.,nK1), a common empirical procedure for this purpose

is to utilize the Ei distribution, and look for a ‘significant’

change in Ei as a stopping point, above which classification

seems unnecessary. In a statistical sense, a critical value

Elimit is defined as one lying in the upper tail of the Ei

distribution (Mojena, 1977):

Elimit ZmCkd (2)

where k is the standard deviate; the m and d are the mean and

unbiased standard deviation of the Ei distribution, respect-

ively. Mojena (1977) argued that values of k in the range

2.75–3.50 might give a good overall classification.

If no value for Ei is larger than the critical value, we must

choose: (a) one cluster; (b) the ith stage for which the iC1th

stage yields the largest standard deviate; or (c) some other

appropriate heuristic rule.
However, as noted below, Elimit generally depends upon

the value of En that is much larger than EnK1. The stopping

rule adopted is thus most likely to produce a smaller optimal

number of clusters. Moreover, we can imagine that the

knickpoint determined in this way would be of no value in

the case of fault data randomised in the parameter space. For

the sake of compensation, we introduce the square root of

the mean of squares of cosines between individual fault

datum vectors and the stress vector estimated from them

(di):

di Z

ffiffiffiffiffi
Ei

m

r
(3)

where m is the number of data in the cluster at the ith stage

whose sum of squares of cosines is Ei. Further, a subtended

angle is simply calculated from the root of the mean of

square cosines (see the inset of Fig. 1). Both are good

indices showing the degree of dispersion among the grouped

data as a whole. The more dispersed the data, the larger are

the indices. Our calculation shows (Fig. 1) that the

parameter space is divided into two subspaces of equal

area by the hyperlines intersected in that angle with the

estimated stress vector, if half of the subtended angle

reaches ca. 228. This seems to represent the nature of fault

data randomised in the parameter space, and may be

considered as an upper limit of subtended angles calculated

from fault data sets.

Both Mojena’s (1977) stopping rule and the concept of

subtended angle were used below in this paper to look for

the optimal number of clusters.
2.6. Procedure

The proposed inversion method has two parts: to classify

fault/slip data into homogeneous fault classes, and further to

classify these classes into subsets. The entire procedure to

realize it is as follows:
1.
 Input measured fault/slip data, the data number K for

selecting K-datum sets, and angular cosine limit W,
2.
 Calculate direction cosines of each fault/slip datum, and

then its datum vector according to Fry’s (1999)

equations,
3.
 Find homogeneous fault classes from K-datum sets until

there are fewer than K data in the residual set,
4.
 Assign each of the residual data to an old or new

homogeneous fault class, or discard it,
5.
 Apply the above cluster scheme to the homogeneous

fault classes obtained, as follows:
(a)
 determine optimal stress vectors for each class, and for

every permutation of pairs of classes, using the method

developed by Fry (1999) and Shan et al. (2003),
(b)
 calculate the increase in sum of squares of cosines for

every permutation of pairs of classes,
(c)
 fuse those two entities with the smallest increase in sum



    
 

 
 

    

 
  

   

Fig. 1. Ratio in surface area of a belt around a stress vector to the unit hyper sphere in the 5D parameter space. The belt has a subtended angle:mom 0 between

vectors from the upper and lower boundaries to the origin. The graph at the right side was obtained by Monte Carlo sampling—a number of 100,000 vectors

evenly distributed in the hyper sphere were generated, and the ratio was estimated by counting the number of vectors having a smaller angle than half of the

subtended angle, and dividing it by the whole number. Half of the subtended angle reaches ca. 228 while the ratio becomes 0.5. See the text for further

explanation.
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of square cosine (that is, least Ei in the ith stage) into a

new class, and
(d)
 terminate when there one class remains; otherwise,

return to step (a)
(Should two entities have equal smallest Ei at (c) above,

one is taken arbitrarily. This will not affect the overall

result.),
6.
 Determine the best number of subsets from the Ei

distribution and from the square root of mean Ei, and

separate the heterogeneous fault data into these

homogeneous subsets, and
7.
 With the constraints of measured fault slips, restore the

stress tensor from the calculated stress vector of each

homogeneous subset, according to Fry’s (1999)

equations.
3. Test

In order to validate the proposed method, a set of

artificial heterogeneous fault/slip data was taken from Shan

et al. (2003, listed there as case one in appendix C). The data

set is equally mixed from three prescribed phases. Each

phase has 20 fault data, of which each fault slip is strictly

parallel to the maximum resolved shear along the fault plane

under the prescribed stress. Data 1–20, 21–40 and 41–60

belong to the three phases, respectively.

Let data number K and angular cosine limit W be 16 and

0.1, respectively. Results through applying the proposed

method to the data are shown in Figs. 2 and 3. Nine

homogeneous fault classes were recognized by the method.

Classification of these classes into three groups correspond-

ing to the three prescribed phases is clearly efficient because

of the abrupt change in the Ei distribution between E5,
which is nearly zero, and the relatively much larger E6 (Fig.

3a). The abrupt change corresponds to a lower value of

standard deviate k,!2.5, which suggests an underestimated

number of clusters using Mojena’s (1977) stopping rule.

Two groups remain when kR2.5. This fairly wide range

would lead to a biased acceptance of an optimal number of

three subsets without knowledge of controlling stresses.

Similar to the Ei distribution is the distribution of half

subtended angles (Fig. 3b). Half of the subtended angle is in

the range 0.00–2.898 when all classes are fused into three

clusters.
4. Case study

The real example, taken from Xie and Liu (1989),

consists of 198 fault/slip data measured in the middle

segment of the active NEE-trending transcurrent Altun

fault. The fault defines the northern boundary of the Tibetan

Plateau. It has a cumulative sinistral strike slip of about

350 km as a consequence of extrusion of thickened Tibetan

Plateau created by the collision between India and Eurasia

since 45 Ma (e.g. Molnar and Tapponnier, 1975).

A number of inversion methods have recently been

applied to this fault/slip data set, including conventional

inversion (Xie and Liu, 1989), a fuzzy C-lines clustering

algorithm (Shan et al., 2004a), and graphic presentation

(Shan et al., 2004b). All these results indicate the

heterogeneity of the data set. Two distinct tectonic phases

were recognized and the determined orientation and stress

ratio varied slightly with inversion method. According to

Xie and Liu (1989), the maximum principal stress has a

bearing of 166.718 in subset 1, and of 72.158 in subset 2.

Projection of these data by the stereonet method of Shan



Fig. 2. A dendrogram of classification of the artificial fault data through applying the proposed method. The mean and the unbiased deviation of the least

increases in sum of square cosines in varying stages are 0.094 and 0.528, respectively. Dashed lines represent critical values under varying standard deviate k.

See the text for further explanation.
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et al. (2004b) showedmore heterogeneous features, onemajor

and two or more minor girdles, but these remain in doubt

because the validity of the method’s assumption of Anderso-

nian stress state had not been ascertained in this case.

In the light of these considerations, data number K was

assigned a value of 16—large enough to process three-phase

fault data. The angular cosine limit W was 0.1. By means of

our proposed method, 31 homogeneous fault classes were

recognized from the data set, and then were further

classified (Figs. 4 and 5). In the dendrogram, all classes

were eventually fused into a single group at E30Z15.44 and

a half subtended angle of 4.648, and two groups at E29Z8.68

and a half subtended angle of 4.988. A significant change in

the distribution takes place in the Ei distribution between

E25 and E26 (Fig. 5a) where k is nearly in the range 2.0–2.5.

This indicates an optimal number of 6 subsets, thus

implying a more heterogeneous nature of data set than

previously considered.
   

Fig. 3. Sum of square cosines (a) and half of the subtended angle (b) in stage
In terms of precise estimation, the previous model of a

two-phase mixture (Xie and Liu, 1989; Shan et al., 2003,

2004a) seems to be a very rough approximation to the real

complex data. It is certain that a simple mixture of two-

phase data fails to account for many subtle linear structures

in the parameter space, as illustrated by the stereonet

projection assuming Andersonian stress state showing a

loosely defined girdle with a large maximum (Shan et al.,

2004b). It may be significant that Xie and Liu (1989)

estimated stresses only from fault data measured in the

subsegments of the middle Altun segment. Their two

distinct phases accord with field observations. The presence

of many potential homogeneous subsets cannot be

explained by measurement errors at outcrop. Other possible

reasons for fluctuation from stress inversion assumptions

must be included to account for the complexity of the data,

such as intermittent fault slip, slip not synchronous every-

where along the fault (e.g. Price, 1988; Gutscher et al.,
   

s. Thin lines represent critical values under varying standard deviate k.



Fig. 4. A dendrogram of classification of the 198 fault/slip data taken from Xie and Liu (1989), using the method proposed. The mean and the unbiased

deviation of the least increases in sum of square cosines in varying stages are 0.070 and 0.338, respectively. Dashed lines represent critical values under varying

standard deviate k. Data number K and angular cosine limitW were assigned values of 16 and 0.1, respectively. There are 33 homogeneous fault classes, each

having 6 or a little more fault data and being represented by a horizontal short line at the bottom.
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1996), heterogeneous distributions of earthquake shear

stress drop over much of the rupture surface (e.g. Day et

al., 1998), and heterogeneous deformation (i.e. stress)

distributions in structurally complex areas (e.g. Mitra,

1987; Koyi, 1995).
5. Discussion

5.1. Advantages and disadvantages

The proposed inversion method is different from many

pre-existing methods in that it is simple and direct.

Hierarchical classification of fault data in a forward way

parallels our thinking. The way of processing the residual
Fig. 5. Sum of square cosines (a) and half of the subtended angle (b) in stage
fault data allows one to recognize and leave out some

spurious data, which is of practical use. Spurious fault data,

although in a minority, seem rather common, presumably

due to diverse factors, including mistakes at measurement or

in recording, fluctuation from the assumptions of stress

inversion, and so forth.

This method is in the category of hard division meaning

that each datum only belongs to a single subset. However,

fault/slip data are normally fuzzy by virtue of indetermin-

ability of the individual datum as well as fluctuation from

inversion assumptions. Hard division overlooks this com-

mon feature, rather like a wave filter. It tends to fail in

recognizing subtle linear structures among fault data in the

parameter space (Shan et al., 2003). Other disadvantages are

discussed below.
s. Thin lines represent critical values under varying standard deviate k.
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5.2. Data number K

From the method for finding a homogeneous fault class

from K data, it is fairly easy to appreciate that K has a

minimum number of 5PC1 if there are P phases in the fault

data. Variation in value of K might have some influence on

defining a homogeneous fault class and on run time. For

values of K smaller than the minimum, we will have shorter

run times but likely a heterogeneous fault class. For

example, if a set of four-phase fault data has two data

under each phase at KZ8, the cluster obtained is absolutely

heterogeneous. This possibility decreases to zero with

increasing values of K. However, this would involve the

cost of enormous calculations. In accord with the binomial

theorem, the number of 5-datum subsets is C(K, 5)ZK!/5!.

It increases dramatically with K, for instance 2,118,760 at

KZ50.

For an unknown number of phases there is no general

rule for assigning a definite number K that minimises run

time. We have to find some remedy—K as large as possible,

at the cost of satisfactory run time. This seems not to be a

big problem for today’s large-memory, fast-running per-

sonal computers. In this paper, K has a prescribed value of

16, so that fault/slip data of no more than three phases could

be processed. We believe this may be large enough to

process most heterogeneous fault data sets measured at

outcrop or in core, which have homogeneous subsets.

5.3. Homogeneity of fault class

The first step of the method is to find a series of

homogeneous fault classes from a fault/slip data set. Given a

large enough value of K, the great majority of fault classes

obtained are homogeneous, but there remains a very small,

theoretical possibility that a class is heterogeneous. If a fault

datum lies in or near the intersection of two optimal

hyperplanes in the parameter space, we will have equal

possibility of classifying it to either subset. Its final

assignment is dependent only on the way that we take the

K-data set from the whole data. A datum belonging to subset

A may be classified to subset B. This problem is not obvious

until there are quite a number of data in or near the

intersections. Although such a disposition in the parameter

space can be made visible by the methods of Fry (1992,

1999) and Shan et al. (2004b), it is almost impossible to

determine the influence on stress estimation by most

inversion methods when applied to a real data set in

advance of separation into homogeneous subsets and

estimation of stress.
6. Conclusion

An inversion method has been developed for forward

separation of heterogeneous fault/slip data into subsets

through applying hierarchical cluster analysis. It has two
parts: fault/slip data are classified into many homogeneous

fault classes, and these classes are then classified into

subsets. In the first stage, we take a series of K-data sets

from the whole data. With each, we proceed, among all pairs

of 5-datum subsets selected in a binomial distribution from

the selected K data set, to find the homogeneous fault class

that consists of the two 5-datum subsets having maximum

similarity in their optimal stress and then exclude this class

from the whole data. This is repeated until there is

insufficient data to make up a K set. The residual data are

then assigned to an old fault class or a new fault class, or

discarded.

In the second stage, the homogeneous fault classes

obtained are hierarchically classified by using our novel

cluster method. This defines an increase in the sum of

squares of cosines between the optimal stress vector and

individual fault datum in a fault class as the partition

criterion. The sum is always greater than or equal to zero, so

a monotonic increase in solutions is guaranteed. Both

Mojena’s (1977) stopping rule and the concept of subtended

angle are adopted to determine the preferred number of

subsets.

The proposed method is simple, direct and forward. The

method of discarding some residual data at the first step

makes it fairly easy to recognize and eliminate some

spurious fault data. Spurious data, although in a minority,

are common and present a big challenge for many inversion

methods. On the other hand, this method is a type of hard

division that overlooks the indeterminate nature of fault

data. The more heterogeneous the data the more enormous

the calculation needed to find the homogeneous fault class

from the K data set. Given P as the number of phases, the

minimum number of K is 5PC1.

Two examples, one artificial and one real, have

demonstrated the feasibility of the proposed method.
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Appendix A. Monotonic increase in sum of square
cosines with grouping

Let us consider two entities p and q, each having sum of

square cosines, Ep and Eq, respectively, between the optimal

stress vector and fault datum. They are classified into a new

entity with a sum of Epq. The method developed by Fry

(1999) and Shan et al. (2003) was used in this paper to solve

for the optimal stress vector for a certain entity. As proven

by Shan et al. (2003), the optimal stress vector is the least

eigen vector of the data matrix. Let Ap, Aq and Apq stand for

data matrices of entities p, q and pq, respectively. From

definition, we know ApqZApCAq. Let xp, xq and xpq stand
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for the eigen vectors corresponding to the least eigen values

for entities p, q and pq, respectively:

Epq Z xpqApqxpq

Z xpqðAp CAqÞxpq

Z xpqApxpq CxpqAqxpq

q xpqApxpqRxpApxp ZEp; xpqAqxpqRxqAqxq ZEq

r EpqREp CEq

Therefore, in this way, an agglomerated entity always

has no less sum of square cosine than its two daughter

entities.
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